
ORIGINAL PAPER

Quantitative structure–activity relationship study of nonpeptide
antagonists of CXCR2 using stepwise multiple linear regression
analysis

Jahan B. Ghasemi • Parvin Zohrabi •

Habibollah Khajehsharifi

Received: 21 September 2009 / Accepted: 20 November 2009 / Published online: 19 December 2009

� Springer-Verlag 2009

Abstract The chemokine receptor CXCR2 plays an

important role in recruiting granulocytes to sites of

inflammation and has been proposed as an important

therapeutic target. A linear quantitative structure–activity

relationship model is presented for modeling and predict-

ing biological activities of CXCR2 antagonists. The model

was produced by using the multiple linear regression

technique on a database that consists of 55 nonpeptide

antagonists of CXCR2. Stepwise regression as a variable

selection method was used to develop a regression equation

based on 43 training compounds, and predictive ability was

tested on 12 compounds reserved for that purpose.

Appropriate models with low standard errors and high

correlation coefficients were obtained. The mean effect of

descriptors and standardized coefficients shows that the

mean atomic van der Waals volume is the most important

property affecting the biological activities of the mole-

cules. The square regression coefficient of prediction set

for the multiple linear regression method was 0.912.

Keywords QSAR � Chemokine receptor �
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Introduction

Chemokines are a set of small proteins, typically com-

prising 70–80 amino acids, which play an important role in

the recruitment and activation of inflammatory cells. They

may be classified according to the nature of conserved

cysteine motifs, and generally fall into two main catego-

ries, the CC and CXC chemokines. Both subfamilies

include a number of potent chemoattractants and activators

of different leukocyte subsets [1]. One family of chemo-

kines is characterized by the presence of an intervening

amino acid between the first pair of conserved cysteines

and is known as the _Cys-X-Cys_ (CXC) or a-chemokine

family [2]. CXC chemokines that contain the sequence

Glu-Leu-Arg (ELR) before the first N-terminal cysteine

residue mediate, in part, the recruitment of neutrophils and

a subset of monocytes. ELR ? chemokines act through

CXC chemokine receptors CXCR1 and CXCR2 [3, 4].

CXCR1 binds IL-8 and granulocyte chemotactic pro-

tein-2 (GCP-2/CXCL6) with high affinity, whereas CXCR2

is promiscuous, binding seven known ELR a-chemokines

with high affinity, including GRO-a (CXCL-1), GRO-b

(CXCL-2), GRO-c (CXCL-3), epithelial neutrophil acti-

vating peptide 78 (ENA-78/CXCL-5), GCP-2 (CXCL-6),

neutrophil-activating peptide-2 (NAP-2/CXCL-7), and

IL-8 (CXCL-8). Furthermore, CXCR2 is expressed by a

wide range of cell types, for example neutrophils, mast

cells, T cells, keratinocytes, and cerebellar neurons [5–7].

CXCR2 mouse gene knockout studies show that there

are elevated leukocytes and lymphocytes without apparent

pathogenic consequences, indicating that CXCR2 is not

required for normal physiology [8]. Increased levels of

CXCR2 and its ligand IL-8 have been observed in humans

with diseases such as arthritis, asthma, rheumatoid arthritis,

psoriasis, reperfusion injury, and chronic obstructive
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pulmonary disease (COPD) [9]. This suggests that the

CXCR2 receptor and IL-8 may play a pivotal role in these

inflammatory disorders. Therefore, antagonists of CXCR2

receptor could, in principle, be used for treatment of

inflammatory and related diseases. CXCR2 antagonists

have indeed attracted much attention as targets for small-

molecule drug discovery in the last decade [10].

One of the most successful approaches to the prediction of

chemical properties starting with molecular structural infor-

mation only is modeling of quantitative structure–activity/

property relationships (QSAR/QSPR). The QSAR models

provide significant additional insight into the relationship

between molecular structure and fundamental processes and

phenomena in chemistry [11]. Quantitative structure–activity

relationships (QSAR) are mathematical equations relating

chemical structure to a wide variety of physical, chemical,

biological, and technological properties [12]. A major step in

constructing QSAR models is finding a set of molecular

descriptors that represent variation in the structural properties

of the molecules. A wide variety of descriptors have been

reported for use in QSAR analysis [13, 14].

The advantage of this approach over other methods is

that it requires a knowledge of chemical structure only and

is not dependent on any experimental properties. Con-

struction of QSAR models is essential for understanding

the molecular mechanism of action of receptor antagonists,

their design, and virtual screening [15]. Currently, several

QSAR models utilizing a flexible docking approach have

been shown to be highly efficient in the description of

ligand–receptor interactions [16].

The main objective of this work was to develop an

accurate, simple, fast, and less expensive method for cal-

culation of pIC50 for a set of nonpeptide antagonists of

CXCR2 using theoretical molecular descriptors. In this

work a QSAR study was performed to develop models that

relate the structures of 55 CXCR2 antagonists to their

biological activities. The stepwise multiple linear regres-

sion (MLR) using SPSS (ver 11.5) as variable selection

software was used to model biological activity with the

structural descriptors.

Results and discussion

External validation

For regression analysis the data set was separated into two

groups: training and prediction sets. The molecules inclu-

ded in these sets were selected randomly. The training set,

consisting of 43 molecules, was used for model generation

using the SPSS software package. The prediction set,

consisting of 12 molecules, was used to evaluate the gen-

erated model.

The predictive power of the regression model developed

on the basis of the selected training set is estimated from

the values predicted for prediction set chemicals, by use of

the external Q2 that is defined as [17]:

Q2
ext ¼ 1�

Ppred
i�1 yi � ŷið Þ2

Ppred
i�1 yi � �ytrð Þ2

ð1Þ

where yi and ŷi are the measured and predicted (over the

prediction set) values of the dependent variable, respec-

tively, and �ytr is the averaged value of the dependent

variable for the training set; the summations cover all the

compounds in the prediction set [18]. Other measures used

to define the accuracy of prediction of the proposed QSARs

are the square of the correlation coefficient (R2) calculated

for the prediction chemicals by applying the model

developed on the training set, and the root-mean-squared

error of prediction (RMSEP). The RMSEP is a measure-

ment of the average difference between predicted and

experimental values in the prediction step. The orthogo-

nality of the descriptors in the model was established

through variance inflation factor (VIF) [19, 20]. The VIF is

defined as 1/(1 - ri
2) where ri is the multiple correlation

coefficient for the ith variable regressed on the p - 1

others, p being the number of variables contributing to the

model. A VIF value larger than 5 indicates that the infor-

mation of the descriptors may be hidden by the correlation

of the other descriptors [21].

Regression models

Multiple linear regression analysis has been carried out to

derive the best QSAR model. The MLR technique was

performed on the molecules of the training set. After

regression analysis, a few suitable models were obtained

among which the best model was selected; this is presented

in Eq. 2. The developed model was then used to predict the

pIC50 values of the compounds in the test set, which have

not been used for the model development. MLR analysis

provided a useful equation that can be used to predict the

pIC50 of drugs based upon these parameters. This QSAR

model for the biological activities of the CXCR2 antago-

nists includes four molecular descriptors.

pIC50 ¼ �9:7250þ 4:5742� GATS5vþ 0:0536

� RDF065mþ 3:3776� R3uþ 9:2569� Vm

ð2Þ

The statistical characteristics of the best four indices in

the MLR model are shown in Table 1. The orthogonality of

the descriptors (VIF) in the MLR model is in agreement

with the limit. The standardized regression coefficient

reveals the significance of an individual descriptor

presented in the regression model. The greater the
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absolute value of a coefficient, the greater the weight of

the variable in the model. Figure 1 shows that the

effect of the mean atomic van der Waals volume (Vm),

R autocorrelation of lag 3/unweighted (R3u), Geary

autocorrelation-lag 5 weighted by atomic van der Waals

volume (GATS5v), and the radial distribution function at

6.5 Å interatomic distances weighted by atomic mass and

contributed negatively (RDF065m) are more significant

than the other descriptors. It is worthy to note that the Vm

descriptor has the highest significance for the MLR model.

Evaluation of the regression model

Model validation techniques are needed in order to dis-

tinguish between true and random correlations and to

estimate the predictive power of the model. The real pre-

dictive ability of any QSAR model cannot be judged solely

by using internal validation, it has to be validated on the

basis of predictions for pIC50 of CXCR2 antagonists not

included in the training set. For evaluation of the predictive

power of the constructed model, the optimized model was

used for prediction of the pIC50 values of 12 CXCR2

antagonists in the prediction set, which were not used in the

optimization procedure.

In Table 2, the predicted values of pIC50 obtained by the

MLR method and the percent relative errors of prediction

are presented. Plots of predicted pIC50 versus experimental

pIC50 and the residuals (predicted pIC50 – experimental

pIC50) versus experimental pIC50 values, obtained by the

MLR modeling, are shown in Figs. 2 and 3, respectively.

The agreement observed between the predicted and

experimental values in Fig. 2 and the random distribution

of residuals about zero mean in Fig. 3 confirms the good

predictive ability of MLR modeling. For the constructed

model, general statistical parameters were selected to

evaluate the prediction ability of the model for pIC50. The

statistical parameters root mean squares error of prediction

(RMSEP, measures the precision in prediction), relative

error of prediction (REP), standard error of residual in

Table 1 Model parameter values and standardized coefficients for

the MLR model

Source Model parameter Mean effect VIF

Value SE

Intercept -9.72505 3.177059

GATS5v 4.574166 0.613444 3.628058 1.146417

RDF065m 0.053591 0.017797 0.520429 1.175182

R3u 3.377594 0.919507 5.532106 1.440488

Vm 9.256878 2.866415 6.527176 1.422166

Fig. 1 Standardized coefficients versus descriptors in the MLR

model

Table 2 Experimental pIC50, predicted pIC50, residuals values, and

relative error for external prediction set by the MLR method

No. pIC50 (Exp.) pIC50 (Pred.) Residuals RE (%)

29 5.114 5.127 0.013 0.254

31 5.456 5.658 0.202 3.709

34 5.638 5.619 -0.019 -0.334

38 5.854 5.431 -0.423 -7.229

13 6.066 5.664 -0.402 -6.624

12 6.495 5.861 -0.634 -9.762

53 6.77 6.386 -0.384 -5.666

4 6.943 7.136 0.193 2.782

2 7.201 7.501 0.300 4.171

23 7.495 7.180 -0.315 -4.201

9 7.658 7.761 0.103 1.344

16 8.032 8.232 0.200 2.491

Fig. 2 pIC50 values predicted by MLR modeling versus experimental

pIC50 values
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prediction (SEP, measures the precision in prediction), and

squared regression coefficient calculated for the MLR

model are listed in Table 3. The data presented in this table

indicate that validation has good statistical qualities with

low prediction errors. Table 4 presents the correlation

matrix, where it is clear that the four selected descriptors

are highly decorrelated.

Interpretation of the descriptors

The best four-parameter equation for prediction of pIC50

for an unknown compound included Vm (constitutional),

R3u (GETAWAY descriptor), GATS5v (2D-autocorrela-

tion descriptor), and RDF065m (RDF descriptor).

Comparison of the mean effects of the descriptors

appearing in the MLR model shows that the Vm (mean

atomic van der Waals volume) of the molecules has the

largest effect on the pIC50 of the CXCR2 antagonists

(Table 1). The mean effect of a descriptor is the product of

its mean and the regression coefficient in the MLR model

[22]. Vm is a constitutional descriptor. Constitutional

descriptors are basically related to the number of atoms

and bonds in each molecule. These are the most simple and

commonly used descriptors, the most common

constitutional descriptors are molecular weight, van der

Waals volume, atomic electronegativities and polarizabil-

ities, number of atoms, non-H atoms, covalent bonds,

multiple bonds, bond orders, aromatic ratio, number of

double and triple bonds, aromatic bonds, and different

types of (n-membered) rings and benzene-like rings. These

descriptors are insensitive to any conformational change,

do not distinguish among isomers, and are either 0D

descriptors or 1D descriptors [18]. Vm is a bulk property,

which describes the size of a molecule.

The second descriptor in the models is the R3u; R3u is a

GETAWAY descriptor (3D). The GETAWAY (geometry,

topology, and atom-weights assembly) descriptors [13, 23]

are recently proposed molecular descriptors derived from a

new representation of molecular structure, the molecular

influence matrix (MIM), denoted by H and defined as the

following

H ¼M MT �M
� ��1

MT ð3Þ

where M is the molecular matrix constituted by the cen-

tered Cartesian coordinates x, y, and z of the molecule

atoms (hydrogens included) in a chosen conformation, and

the superscript T refers to the transposed matrix.

The diagonal elements hii of the MIM, called leverages,

encode atomic information and represent the ‘‘influence’’

of each molecule atom in determining the whole shape of

the molecule. In fact, mantle atoms always have higher hii

values than atoms near the molecule center. Moreover, the

magnitude of the maximum leverage in a molecule depends

on the size and shape of the molecule itself. Each off-

diagonal element hij represents the degree of accessibility

of the jth atom to interactions with the ith atom or, in other

words, the attitude of the two considered atoms to interact

with each other. A negative sign for the off-diagonal ele-

ments means that the two atoms occupy opposite molecular

regions with respect to the center, hence the degree of their

mutual accessibility should be low.

Two sets of theoretically closely related molecular

descriptors have been devised: H-GETAWAY descriptors

have been calculated from the MIM H, and R-GETAWAY

descriptors are from the influence/distance matrix R where

the elements of the MIM are combined with those of the

geometry matrix.

The influence/distance matrix R is the new symmetric

A 9 A molecular matrix, proposed here, whose elements

resemble the single terms in the sums of the gravitational

indices, defined as the following:

R½ �ij�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hii � hjj

p

rij

" #

ij

i 6¼ j ð4Þ

where hii and hjj are the leverages of the two considered

atoms and rij is their geometric distance. The row sums of

Fig. 3 Residual versus experimental pIC50 in the MLR model

Table 3 Statistical parameters obtained by applying the MLR

method to the test set

Parameter RMSEP SEP REP (%) Rpred
2 Qext

2

Value 0.317343 0.331454 4.910057 0.912 0.8770217

Table 4 Correlation matrix for MLR model

pIC50 GATS5v RDF065m R3u Vm

pIC50 1

GATS5v 0.721101 1

RDF065m 0.547172 0.324529 1

R3u 0.191318 -0.05648 0.105711 1

Vm 0.128573 -0.02947 0.068998 -0.5196 1
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the influence/distance matrix encode some useful infor-

mation that could be related to the presence of significant

substituents or fragments in the molecule. In fact, it has

been observed that larger row sums correspond to terminal

atoms that are located very close to other terminal atoms

such as those in substituents on a parent structure. With the

objective of catching relevant chemical information, these

new descriptors have been defined by applying: traditional

matrix operators, concepts of the theoretical information

and spatial autocorrelation formulas, and weighting the

molecule atoms accounting atomic mass, polarizability,

van der Waals volume, and electronegativity. R3u is R

autocorrelation of lag 3/unweighted.

Another descriptor in the MLR model is GATS5v;

GATS5v belongs to 2D-autocorrelation descriptors (2D).

This set consists of 96 descriptors calculated from the

molecular graph by summing the products of atom weights

of the terminal atoms of all the paths of the considered path

length (the lag). The 2D-autocorrelations by Moreau–Broto

(ATS), Moran (MATS), and Geary (GATS) algorithms are

calculated from lag 1 to lag 8 for four different weighting

schemes [24–26],

ATS pk; lð Þ ¼
X

i

dijpkipkj ð5Þ

MATS pk; lð Þ ¼ N

2L

P
ij dij pki � �pkð Þ pkj � �pk

� �

P
i pki � �pkð Þ ð6Þ

GATS pk; lð Þ ¼ N � 1ð Þ
4L

P
ij dij pki � �pkð Þ pkj � �pk

� �

P
i pki � �pkð Þ ð7Þ

where ATS (pk,l), MATS (pk,l), and GATS (pk,l) are Moreau–

Broto’s autocorrelation coefficient, Moran’s index, and

Geary’s coefficient at spatial lag l, respectively, pki and pkj

are the values of property k of atoms, i and j, respectively, �pk is

the average value of property k, L is the number of nonzero

values in the sum, N is the number of atoms in the molecule,

and d (l,dij) is a Dirac-delta function defined as:

d l; dij

� �
¼ 1 if dij¼1

0 if dij6¼1

� �

ð8Þ

where dij is the topological distance or spatial lag between

atoms i and j.

Spatial autocorrelation measures the level of interde-

pendence between properties, and the nature and strength

of that interdependence. In a molecule, Moran’s and

Geary’s spatial autocorrelation analysis tests whether the

value of an atomic property at one atom in the molecular

structure is independent of the values of the property at

neighboring atoms. If dependence exists, the property is

said to exhibit spatial autocorrelation. The autocorrelation

vectors represent the degree of similarity between mole-

cules. Four different weighting schemes have been used:

atomic masses (m), atomic van der Waals volumes (v),

atomic Sanderson electronegativities (e), and atomic

polarizabilities (p). Autocorrelation vectors were calculated

for spatial lags l ranging from 1 up to 8. The autocorrela-

tion descriptors are denoted by the scheme: type of

descriptor-spatial lag-weighting property; GATS5v is the

Geary autocorrelation-lag 5 weighted by atomic van der

Waals volume. The definition of autocorrelation-like indi-

ces is a very active field of research covering from small

drugs to proteins, which has generated some recent publi-

cations including research articles and reviews [27, 28].

The last descriptor in the MLR model which has the

smallest mean effect was the RDF065m, these RDF

descriptors belonging to the class of radial distribution

function descriptors are based on the distance distribution

in the geometrical representation of the molecule. In

addition, the RDF also provides valuable information about

bond distances, ring types, planar and non-planar systems,

atom types, and other important structural motifs. The RDF

code has been proved to be a good representation of the 3D

structure which has several merits, for example indepen-

dence of the number of atoms; unambiguity regarding the

three-dimensional arrangement of the atoms, and invari-

ance against translation and rotation of the entire molecule.

The RDF of an ensemble of N atoms can be interpreted

as the probability distribution of finding an atom in a

spherical volume of radius r. The RDF used in this work

is as follows:

g rð Þ ¼ f
XN�1

1

XN

i�j

AiAje
�B r�rijð Þ2 ð9Þ

f ¼ 1

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

r
g rð Þ½ �2

r
ð10Þ

where f is a scaling factor, N is the number of atoms, A is

the atomic properties of atoms i and j, B is smoothing

parameter that defines the probability distribution of the

individual distances, rij is the distance between the atoms i

and j, and g (r) was calculated at a number of discrete

points with defined intervals.

Each molecule was represented by a vector of length 32.

The parameter B was set to 25 Å-2 corresponding to a total

resolution of 0.2 Å in the defined distance r. The RDF for

the structure derivations was calculated with the atomic

properties. RDF065m is the radial distribution function at

6.5 Å interatomic distances weighted by atomic mass and

contributed negatively [29].

Conclusion

Novel medicines are typically developed using a trial and

error approach which is costly and time-consuming. The
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application of quantitative structure–activity relationship

(QSAR) methodologies to this problem has the potential to

reduce substantially the time and effort required to discover

new medicines or improve current ones in terms of their

efficacy. QSAR technology employs statistical methods to

derive quantitative mathematical relationships linking

chemical structure and biological activity. In this study we

used MLR to model and predict pIC50 of 55 CXCR2

antagonists including N,N0-diphenylureas, nicotinamide

N-oxides, quinoxalines, and triazolethiols. The MLR anal-

ysis provided a useful equation and the most relevant set of

descriptors was selected by the stepwise variable selection

method. The results obtained indicate that four descriptors,

Vm, R3u, GATS5v, and RDF065m, play an important role in

the biological activities of drug structures. The high corre-

lation coefficients (0.912) and low prediction errors obtained

confirm good predictive ability of the model.

Materials and methods

The QSAR model for estimation of the pIC50 of CXCR2

antagonists is established in the following steps:

• molecular structure input and generation of the files

containing the chemical structures is stored in a com-

puter-readable format;

• quantum mechanics geometry is optimized with a semi-

empirical method;

• structural descriptors are computed;

• structural descriptors are selected; and

• the structure—pIC50 model is generated by MLR and

statistical analysis.

Data set

In this investigation, 55 CXCR2 antagonists were taken

from the literature [30]. Four main classes of substances

represented in the dataset are N,N0-diphenylureas, nicotin-

amide N-oxides, quinoxalines, and triazolethiols. The

structures of the compounds investigated and their bio-

logical activities are shown in Tables 5, 6, 7, 8. The

negative logarithm of the IC50 value [pIC50 or -log (IC50)]

was adopted as a dependent variable in the QSAR analyses,

with the IC50 values expressed in molar (M) units.

The dataset was split into a training set and a testing set.

The training set of 43 compounds was used to adjust the

parameters of the models, and the test set of 12 compounds

was used to evaluate its prediction ability.
Table 5 Structures and biological activities of the N,N0-diphenyl-

ureas

R4

R3

R2

R1
N N

O

R5
R6

H H

Compound R1 R2 R3 R4 R5 R6 IC50 (nM) pIC50

1 OH H Cl H Br H 906 6.043

2 OH Cl Cl H Br H 63 7.201

3 OH CONH2 Cl H Br H 10 8.000

4 OH CH2NH2 Cl H Br H 114 6.943

5 OH SO2NH2 Cl H Br H 7 8.155

6 OH SO2NMe2 Cl H Br H 12 7.921

7 OH H CN H Br H 25 7.602

8 OH Br CN H Br H 6 8.222

9 OH Cl CN H Br H 22 7.658

10 OH CN Cl H Br H 57 7.244

11 OH H NO2 H Br H 22 7.658

12 OH H NO2 H H H 320 6.495

13 OH NO2 H H H H 860 6.066

14 OH H H NO2 H H 10,900 4.963

15 OH H CN H H H 200 6.699

16 OH SO2NH2 Cl H Cl Cl 9.3 8.032

17 –N=N–NH– CN H Br H 39 7.495

Table 6 Structures and biological activities of the nicotinamide

N-oxides

NO

F

H

N

R
O

Compound R IC50 (nM) pIC50

18 –SO2CH3 130 6.886

19 –SO2C2H5 130 6.886

20 –SO2CH(CH3)2 400 6.398

21 SO2 460 6.337

22 –SO2C6H5 90 7.046

23
SO2

COOH

32 7.495

24 –SO2CH2C6H5 280 6.553
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Computer hardware and software

All calculations were run on a Dell personal computer

with Windows XP as operating system. ChemDraw Ultra

version 9.0 (ChemOffice 2005, CambridgeSoft) software

was used for drawing the molecular structures [31]. The

structures of the compounds were first pre-optimized with

the Molecular Mechanics Force Field (MM?) procedure

implemented in HyperChem software (version 7, Hyper-

cube) and the resulting geometries were further refined by

means of the semi empirical method AM1. The optimiza-

tion was preceded by the Polak–Rebiere algorithm to reach

0.42 kJ (mol Å)-1 root mean square gradient. Molecular

descriptors were calculated using the Dragon software

package [32]. The software contains scripts for generating

1,497 descriptors of different types including: constitu-

tional, topological, RDF, GETAWAY, functional groups,

WHIM, Randic, 3D-Morse, etc. [18]. The software auto-

matically eliminates constant variables in a given dataset.

For descriptors with a correlation higher than 0.95,

parameters are set such that only one is retained in the

dataset. Final descriptor selection task was accomplished

by using stepwise regression using SPSS.

Selection of descriptors

Selection of relevant descriptors, which relate the biolog-

ical activities to the molecular structure, is an important

step in constructing a predictive model. The calculated

descriptors were collected in a data matrix X of dimensions

(n 9 m), where n and m are the number of molecules and

descriptors, respectively. A column vector (y) was made

from the pIC50 data. The stepwise regression method was

used as the variable selection method to select the suitable

descriptors among 164 theoretical descriptors generated by

Dragon software. In stepwise regression, the first selected

explanatory variable has the highest correlation with y.

Then, explanatory variables are consecutively added to the

model in a forward selection procedure, based on their

correlation with the y-residuals. The significance of the

model improvement is evaluated using the statistical F test

[33] and each time a new variable is included into the

model, the backward elimination step follows in which the

F test detects variables that can be removed from the model

without changing the residuals significantly. The variable

selection procedure terminates, when no additional variable

significantly improves the given model. By using these

Table 7 Structures and biological activities of the investigated

quinoxalines

N

N

N

S

S

N

H

Cl

Cl N

N
S

N
N

Cl

Cl
H

25     26 

Compound IC50 (nM) pIC50

25 160 6.796

26 30 7.553

Table 8 Structures and biological activities of the investigated tria-

zolethiols

NN

N

R1

R2 SH

Compound R1 R2 IC50 (nM) pIC50

27 C6H5CH2 C6H5 2,400 5.620

28 3-OHC6H4CH2 C6H5 4,400 5.357

29 C6H5CH2 4-Pyridinyl 7,700 5.114

30 C6H5CH2 2-Furanyl 4,200 5.377

31 C6H5CH2 4-CNC6H4 3,500 5.456

32 C6H5CH2 3-CF3C6H4 3,500 5.456

33 C6H5CH2 4-CF3C6H4 2,800 5.553

34 C6H5CH2 4-CH3OC6H4 2,300 5.638

35 C6H5CH2 3,5-diClC6H3 2,000 5.699

36 C6H5CH2 2-Thienyl 2,000 5.699

37 C6H5CH2 2-CH3C6H4 1,400 5.854

38 C6H5CH2 2-CH3OC6H4 1,400 5.854

39 C6H5CH2 3-ClC6H4 1,000 6.000

40 C6H5CH2 2-FC6H4 890 6.051

41 C6H5CH2 4-ClC6H4 830 6.081

42 C6H5CH2 3,4-diClC6H3 800 6.097

43 C6H5CH2 2,5-diClC6H3 670 6.174

44 C6H5CH2 2-ClC6H4 450 6.347

45 C6H5CH2 2,4-diClC6H3 410 6.387

46 C6H5CH2 2-BrC6H4 350 6.456

47 C6H5CH2 2,3-diClC6H3 350 6.456

48 4-CH3OC6H4CH2 2,4-diClC6H3 10,000 5.000

49 3-CH3OC6H4CH2 2,4-diClC6H3 4,200 5.377

50 3-CH3C6H4CH2 2,4-diClC6H3 730 6.137

51 C6H5CH2CH2 2,4-diClC6H3 450 6.347

52 4-ClC6H4CH2 2,4-diClC6H3 300 6.523

53 3-C6H5OC6H4CH2 2,4-diClC6H3 170 6.770

54 3-ClC6H4CH2 2,4-diClC6H3 92 7.036

55 3-ClC6H4CH2 2-ClC6H4 28 7.553
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criteria, a subset of four descriptors remained, which kept

the most interpretive information for pIC50.

Stepwise multiple linear regression

The objective of stepwise MLR regression [33] is to con-

struct a multivariate model for the dependent variable, y,

based on a few deliberately selected explanatory variables.

The best equation is selected on the basis of the highest

multiple correlation coefficient (r2). The MLR method

provides an equation linking the structural features to the

property of the compounds for predicting the property of

interest. The equation takes the following form:

y ¼ b0 þ b1x1 þ b2x2 þ . . .þ bnxn ð11Þ

where y is the quantitative property or activity being pre-

dicted (dependent variable), xi is an independent

(descriptive) variable, b0 is the intercept, and bi is the

regression coefficient for xi. The software SPSS was used

for MLR analysis. The MLR model was built using a

training set and validated using an external prediction set.

Multiple linear regression techniques based on least-

squares procedures are very often used for estimating the

coefficients involved in the model equation [34].
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